δ15N Values in Crassostrea virginica Shells Provides Early Direct Evidence for Nitrogen Loading to Chesapeake Bay

نویسندگان

  • H. D. Black
  • C. F. T. Andrus
  • W. J. Lambert
  • T. C. Rick
  • D. P. Gillikin
چکیده

Crassostrea virginica is one of the most common estuarine bivalves in the United States' east coast and is frequently found in archaeological sites and sub-fossil deposits. Although there have been several sclerochronological studies on stable carbon and oxygen isotopes in the shells of this species, less is known about δ15N values within their shells, which could be a useful paleoenvironmental proxy to assess estuarine nitrogen dynamics. Modern C. virginica samples were collected in Chesapeake Bay for comparison with archaeological shells from nearby sites ranging in age from ~100 to 3,200 years old. Left valves were sampled by milling the hinge area and the resulting powder was analyzed for %N and δ15N values. Comparison of δ15N values between C. virginica shells shows relatively constant values from ~1250 BC to ~1800 AD. After ~1800 AD, there are rapid increases in 15N enrichment in the shells, which continue to increase in value up to the modern shell values. The increase in δ15N values is evidence of early anthropogenic impact in Chesapeake Bay. These results corroborate the observation that coastal nitrogen pollution occurred earlier than the 19th century and support the use of oyster shell δ15N values as a useful environmental proxy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shell hardness and compressive strength of the Eastern oyster, Crassostrea virginica, and the Asian oyster, Crassostrea ariakensis.

The valves of oysters act as a physical barrier between tissues and the external environment, thereby protecting the oyster from environmental stress and predation. To better understand differences in shell properties and predation susceptibilities of two physiologically and morphologically similar oysters, Crassostrea virginica and Crassostrea ariakensis, we quantified and compared two mechani...

متن کامل

Identification of Eastern Oyster Crassostrea virginica Larvae Using Polarized Light Microscopy in a Mesohaline Region of Chesapeake Bay

Understanding the population dynamics and complete life cycle of bivalves is important for effective management of these commercially and ecologically important organisms. Most of the literature and research on bivalves to date has focused on juvenile and adult bivalves, but much less is known about larvae. The larval stage has been difficult to study due to the lack of a rapid automated approa...

متن کامل

Microbiomes of American Oysters (Crassostrea virginica) Harvested from Two Sites in the Chesapeake Bay

In this study, we used 16S rRNA gene amplicons to describe the bacterial microbiota associated with oysters (Crassostrea virginica) and seawater collected from two sites in the Chesapeake Bay. The dominant bacterial groups included those belonging to the order Pelagibacteraceae, family Enterobacteriaceae, and genus Synechococcus The microbiomes varied among oysters from the same site and betwee...

متن کامل

Reconstructing early 17th century estuarine drought conditions from Jamestown oysters.

Oysters (Crassostrea virginica) were a central component of the Chesapeake Bay ecosystem in 1607 when European settlers established Jamestown, VA, the first permanent English settlement in North America. These estuarine bivalves were an important food resource during the early years of the James Fort (Jamestown) settlement while the colonists were struggling to survive in the face of inadequate...

متن کامل

Response of a benthic suspension feeder (Crassostrea virginica Gmelin) to three centuries of anthropogenic eutrophication in Chesapeake Bay

Biogenic reefs built by oysters and other suspension feeders are vital components of estuarine ecosystems. By consuming phytoplankton, suspension feeders act to suppress accumulation of organic matter in the water column. Nutrient loading increases the rate of primary production, thereby causing eutrophication. As suspension feeders consume more organic matter from increasing abundance of phyto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017